Abstract
AbstractThe development of new methods capable of more realistic modeling of microbial communities necessitates that their results be quantitatively comparable with experimental findings. In this research, a new integrated agent and constraint based modeling framework abbreviated ACBM has been proposed that integrates agent-based and constraint-based modeling approaches. ACBM models the cell population in three-dimensional space to predict spatial and temporal dynamics and metabolic interactions. When used to simulate the batch growth of C. beijerinckii and two-species communities of F. prausnitzii and B. adolescent., ACBM improved on predictions made by two previous models. Furthermore, when transcriptomic data were integrated with a metabolic model of E. coli to consider intracellular constraints in the metabolism, ACBM accurately predicted growth rate, half-rate constant, and concentration of biomass, glucose, and acidic products over time. The results also show that the framework was able to predict the metabolism changes in the early stationary compared to the log phase. Finally, ACBM was implemented to estimate starved cells under heterogeneous feeding and it was concluded that a percentage of cells are always subject to starvation in a bioreactor with high volume.
Funder
Tarbiat Modares University
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献