Bracing for impact: how shifting precipitation extremes may influence physical climate risks in an uncertain future

Author:

Rahat Saiful Haque,Saki Shah,Khaira Ummul,Biswas Nishan Kumar,Dollan Ishrat Jahan,Wasti Asphota,Miura Yuki,Bhuiyan Md Abul Ehsan,Ray Patrick

Abstract

AbstractAs extreme precipitation intensifies under climate change, traditional risk models based on the ‘100-year return period’ concept are becoming inadequate in assessing real-world risks. In response, this nationwide study explores shifting extremes under non-stationary warming using high-resolution data across the contiguous United States. Results reveal pronounced variability in 100-year return levels, with Coastal and Southern regions displaying the highest baseline projections, and future spikes are anticipated in the Northeast, Ohio Valley, Northwest, and California. Exposure analysis indicates approximately 53 million residents currently reside in high-risk zones, potentially almost doubling and tripling under 2 °C and 4 °C warming. Drought frequency also rises, with over 37% of major farmland vulnerable to multi-year droughts, raising agricultural risks. Record 2023 sea surface temperature anomalies suggest an impending extreme El Niño event, demonstrating the need to account for natural climate variability. The insights gained aim to inform decision-makers in shaping adaptation strategies and enhancing the resilience of communities in response to evolving extremes.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3