The characteristics of proteome and metabolome associated with contrasting sperm motility in goat seminal plasma

Author:

Jia Baoyu,Liang Jiachong,Lv Chunrong,Memon Sameeullah,Fang Yi,Wu Guoquan,Quan Guobo

Abstract

AbstractSperm motility is an index tightly associated with male fertility. A close relationship between seminal plasma and sperm motility has been confirmed. This study was to assess the protein and metabolite profiles of seminal plasma obtained from adult goats with high or low sperm motility using the proteomic and metabolomic strategies. In total, 2098 proteins were found. 449 differentially abundant proteins (DAPs) were identified, and 175 DAPs were enriched in the high motility group. The obtained DAPs primarily exist in cytoplasma and extra-cellular portion. The Gene Ontology enrichment analysis demonstrated the main functional roles of these DAPs in regulating biological process, metabolic process of organic substances, cellular-metabolic process, primary-metabolic process, metabolic process of nitrogen compounds, etc. Additionally, the Kyoto-Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DAPs were primarily involved in phosphatidylinositol signaling system, salivary secretion, proteasome, apoptosis, mitophagy-animal, etc. Aided by the parallel reaction monitoring technology, the abundance changing pattern of 19 selected DAPs was consistent with that of the corresponding proteins obtained by TMT. A total of 4603 metabolites were identified in seminal plasma. 1857 differential metabolites were found between the high motility group and the low motility group, and 999 metabolites were up-regulated in the high motility group. The KEGG analysis demonstrated the primary involvement of the differential metabolites in metabolic and synthetic activities. In conclusion, we first established the proteome and metabolome databank of goat seminal plasma, detecting some proteins and metabolites which may affect sperm motility. This study will be valuable for understanding mechanisms leading to poor sperm motility.

Funder

National Nature Science Foundation of China

Yunnan Applied Basic Research Projects

Yunnan Young Academic Leaders Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3