Nano-scale charge trapping memory based on two-dimensional conjugated microporous polymer

Author:

Rezk AymanORCID,Ansari Md. Hasan Raza,Ranjeesh Kayaramkodath Chandran,Gaber Safa,Kumar Dayanand,Merhi Areej,Kaafarani Bilal R.,Hassine Mohamed Ben,El-Atab Nazek,Shetty Dinesh,Nayfeh Ammar

Abstract

AbstractThere is a growing interest in new semiconductor nanostructures for future high-density high-performance flexible electronic devices. Two-dimensional conjugated microporous polymers (2D-CMPs) are promising candidates because of their inherent optoelectronic properties. Here, we are reporting a novel donor–acceptor type 2D-CMP based on Pyrene and Isoindigo (PI) for a potential nano-scale charge-trapping memory application. We exfoliated the PI polymer into ~ 2.5 nm thick nanoparticles (NPs) and fabricated a Metal–Insulator–Semiconductor (MIS) device with PI–NPs embedded in the insulator. Conductive AFM (cAFM) is used to examine the confinement mechanism as well as the local charge injection process, where ultrathin high-κ alumina supplied the energy barrier for confining the charge carrier transport. We have achieved a reproducible on-and-off state and a wide memory window (ΔV) of 1.5 V at a relatively small reading current. The device displays a low operation voltage (V < 1 V), with good retention (104 s), and endurance (103 cycles). Furthermore, a theoretical analysis is developed to affirm the measured charge carriers’ transport and entrapment mechanisms through and within the fabricated MIS structures. The PI–NPs act as a nanoscale floating gate in the MIS-based memory with deep trapping sites for the charged carriers. Moreover, our results demonstrate that the synthesized 2D-CMP can be promising for future low-power high-density memory applications.

Funder

ASPIRE VRI

KAUST Research Funding

Khalifa University Competitive Internal Research Award

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3