Author:
Rezvani Mohammad Ali,Ghasemi Kolsom,Ardeshiri Hadi Hassani,Aghmasheh Masomeh
Abstract
AbstractSulfur compounds are among the most unfavorable constituents of petroleum derivatives, so stringent regulations have been established to curb their atmospheric emissions. In this regard, a new nanocomposite ((n-C4H9)4N)4H[PW11FeO39]@NiO) was synthesized composed of quaternary ammonium bromide salt of ironIII-substituted Keggin-type polyoxometalate immobilized on nickel(II) oxide nanoceramics via sol–gel method. The assembled (n-C4H9)4N)4H[PW11FeO39]@NiO nanocomposite was identified by FT-IR, UV–Vis, XRD, SEM, EDX, and TGA-DTG methods. The characterization results exhibited that ((n-C4H9)4N)4H[PW11FeO39] dispersed uniformly over the surface of the NiO nanoceramics. The ((n-C4H9)4N)4H[PW11FeO39]@NiO nanocomposite was employed as a heterogeneous nanocatalyst in the extractive coupled oxidation desulfurization (ECOD) of real gas oil and dibenzothiophene (DBT) as a model compound. Under relatively moderate conditions, the catalytic performance of the ((n-C4H9)4N)4H[PW11FeO39]@NiO in the ECOD procedure was studied by incorporating acetic acid/hydrogen peroxide as an oxidant system at a volume ratio of 1:2. According to the ECOD results, the ((n-C4H9)4N)4H[PW11FeO39]@NiO demonstrated the effectiveness of up to 95% with 0.1 g at 60 °C under optimal operating conditions. Moreover, the ((n-C4H9)4N)4H[PW11FeO39]@NiO nanocatalyst could be separated and reused for five runs without a noticeable decrease in the ECOD process. This study provides a promising way to meet the target of ultra-low sulfur as an essential process in oil refineries.
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献