Deep oxidative desulfurization of gas oil by iron(III)-substituted polyoxometalate immobilized on nickel(II) oxide, ((n-C4H9)4N)4H[PW11FeO39]@NiO, as an efficient nanocatalyst

Author:

Rezvani Mohammad Ali,Ghasemi Kolsom,Ardeshiri Hadi Hassani,Aghmasheh Masomeh

Abstract

AbstractSulfur compounds are among the most unfavorable constituents of petroleum derivatives, so stringent regulations have been established to curb their atmospheric emissions. In this regard, a new nanocomposite ((n-C4H9)4N)4H[PW11FeO39]@NiO) was synthesized composed of quaternary ammonium bromide salt of ironIII-substituted Keggin-type polyoxometalate immobilized on nickel(II) oxide nanoceramics via sol–gel method. The assembled (n-C4H9)4N)4H[PW11FeO39]@NiO nanocomposite was identified by FT-IR, UV–Vis, XRD, SEM, EDX, and TGA-DTG methods. The characterization results exhibited that ((n-C4H9)4N)4H[PW11FeO39] dispersed uniformly over the surface of the NiO nanoceramics. The ((n-C4H9)4N)4H[PW11FeO39]@NiO nanocomposite was employed as a heterogeneous nanocatalyst in the extractive coupled oxidation desulfurization (ECOD) of real gas oil and dibenzothiophene (DBT) as a model compound. Under relatively moderate conditions, the catalytic performance of the ((n-C4H9)4N)4H[PW11FeO39]@NiO in the ECOD procedure was studied by incorporating acetic acid/hydrogen peroxide as an oxidant system at a volume ratio of 1:2. According to the ECOD results, the ((n-C4H9)4N)4H[PW11FeO39]@NiO demonstrated the effectiveness of up to 95% with 0.1 g at 60 °C under optimal operating conditions. Moreover, the ((n-C4H9)4N)4H[PW11FeO39]@NiO nanocatalyst could be separated and reused for five runs without a noticeable decrease in the ECOD process. This study provides a promising way to meet the target of ultra-low sulfur as an essential process in oil refineries.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3