Abstract
AbstractThe summation and multiplication are two basic operations for secure multiparty quantum computation. The existing secure multiparty quantum summation and multiplication protocols have (n, n) threshold approach and their computation type is bit-by-bit, where n is total number of players. In this paper, we propose two hybrid (t, n) threshold quantum protocols for secure multiparty summation and multiplication based on the Shamir’s secret sharing, SUM gate, quantum fourier transform, and generalized Pauli operator, where t is a threshold number of players that can perform the summation and multiplication. Their computation type is secret-by-secret with modulo d, where d, n ≤ d ≤ 2n, is a prime. The proposed protocols can resist the intercept-resend, entangle-measure, collusion, collective, and coherent quantum attacks. They have better computation as well as communication costs and no player can get other player’s private input.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献