Combined Tissue-Fluid Proteomics to Unravel Phenotypic Variability in Amyotrophic Lateral Sclerosis

Author:

Leoni Emanuela,Bremang Michael,Mitra Vikram,Zubiri Irene,Jung Stephan,Lu Ching-HuaORCID,Adiutori Rocco,Lombardi Vittoria,Russell Claire,Koncarevic Sasa,Ward Malcolm,Pike Ian,Malaspina Andrea

Abstract

Abstract The lack of biomarkers for early diagnosis, clinical stratification and to monitor treatment response has hampered the development of new therapies for amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disorder with a variable site of disease initiation and rate of progression. To identify new biomarkers and therapeutic targets, two separate proteomic workflows were applied to study the immunological response and the plasma/brain proteome in phenotypic variants of ALS. Conventional multiplex (TMT) proteomic analysis of peripheral blood mononuclear cells (PBMCs) was performed alongside a recently introduced method to profile neuronal-derived proteins in plasma using brain tissue-enhanced isobaric tagging (TMTcalibrator). The combined proteomic analysis allowed the detection of regulated proteins linked to ALS pathogenesis (RNA-binding protein FUS, superoxide dismutase Cu-Zn and neurofilaments light polypeptide) alongside newly identified candidate biomarkers (myosin-9, fructose-bisphosphate aldolase and plectin). In line with the proteomic results, orthogonal immunodetection showed changes in neurofilaments and ApoE in bulbar versus limb onset fast progressing ALS. Functional analysis of significantly regulated features showed enrichment of pathways involved in regulation of the immune response, Rho family GTPases, semaphorin and integrin signalling. Our cross-phenotype investigation of PBMCs and plasma/brain proteins provides a more sensitive biomarker exploratory platform than conventional case-control studies in a single matrix. The reported regulated proteins may represent novel biomarker candidates and potentially druggable targets.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3