A GAN-based genetic algorithm for solving the 3D bin packing problem

Author:

Zhang Boliang,Yao Yu,Kan H. K.,Luo Wuman

Abstract

AbstractThe 3D bin packing problem is a challenging combinatorial optimization problem with numerous real-world applications. In this paper, we present a novel approach for solving this problem by integrating a generative adversarial network (GAN) with a genetic algorithm (GA). Our proposed GAN-based GA utilizes the GAN to generate high-quality solutions and improve the exploration and exploitation capabilities of the GA. We evaluate the performance of the proposed algorithm on a set of benchmark instances and compare it with two existing algorithms. The simulation studies demonstrate that our proposed algorithm outperforms both existing algorithms in terms of the number of used bins while achieving comparable computation times. Our proposed algorithm also performs well in terms of solution quality and runtime on instances of different sizes and shapes. We conduct sensitivity analysis and parameter tuning simulations to determine the optimal values for the key parameters of the proposed algorithm. Our results indicate that the proposed algorithm is robust and effective in solving the 3D bin packing problem. The proposed GAN-based GA algorithm and its modifications can be applied to other optimization problems. Our research contributes to the development of efficient and effective algorithms for solving complex optimization problems, particularly in the context of logistics and manufacturing. In summary, the proposed algorithm represents a promising solution to the challenging 3D bin packing problem and has the potential to advance the state-of-the-art in combinatorial optimization.

Funder

Macao Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3