Efficient prediction of attosecond two-colour pulses from an X-ray free-electron laser with machine learning

Author:

Alaa El-Din Karim K.,Alexander Oliver G.,Frasinski Leszek J.,Mintert Florian,Guo Zhaoheng,Duris Joseph,Zhang Zhen,Cesar David B.,Franz Paris,Driver Taran,Walter Peter,Cryan James P.,Marinelli Agostino,Marangos Jon P.,Mukherjee Rick

Abstract

AbstractX-ray free-electron lasers are sources of coherent, high-intensity X-rays with numerous applications in ultra-fast measurements and dynamic structural imaging. Due to the stochastic nature of the self-amplified spontaneous emission process and the difficulty in controlling injection of electrons, output pulses exhibit significant noise and limited temporal coherence. Standard measurement techniques used for characterizing two-coloured X-ray pulses are challenging, as they are either invasive or diagnostically expensive. In this work, we employ machine learning methods such as neural networks and decision trees to predict the central photon energies of pairs of attosecond fundamental and second harmonic pulses using parameters that are easily recorded at the high-repetition rate of a single shot. Using real experimental data, we apply a detailed feature analysis on the input parameters while optimizing the training time of the machine learning methods. Our predictive models are able to make predictions of central photon energy for one of the pulses without measuring the other pulse, thereby leveraging the use of the spectrometer without having to extend its detection window. We anticipate applications in X-ray spectroscopy using XFELs, such as in time-resolved X-ray absorption and photoemission spectroscopy, where improved measurement of input spectra will lead to better experimental outcomes.

Funder

Basic Energy Sciences

Office of Science

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3