Comparison of GATK and DeepVariant by trio sequencing

Author:

Lin Yi-Lin,Chang Pi-Chuan,Hsu Ching,Hung Miao-Zi,Chien Yin-Hsiu,Hwu Wuh-Liang,Lai FeiPei,Lee Ni-Chung

Abstract

AbstractWhile next-generation sequencing (NGS) has transformed genetic testing, it generates large quantities of noisy data that require a significant amount of bioinformatics to generate useful interpretation. The accuracy of variant calling is therefore critical. Although GATK HaplotypeCaller is a widely used tool for this purpose, newer methods such as DeepVariant have shown higher accuracy in assessments of gold-standard samples for whole-genome sequencing (WGS) and whole-exome sequencing (WES), but a side-by-side comparison on clinical samples has not been performed. Trio WES was used to compare GATK (4.1.2.0) HaplotypeCaller and DeepVariant (v0.8.0). The performance of the two pipelines was evaluated according to the Mendelian error rate, transition-to-transversion (Ti/Tv) ratio, concordance rate, and pathological variant detection rate. Data from 80 trios were analyzed. The Mendelian error rate of the 77 biological trios calculated from the data by DeepVariant (3.09 ± 0.83%) was lower than that calculated from the data by GATK (5.25 ± 0.91%) (p < 0.001). DeepVariant also yielded a higher Ti/Tv ratio (2.38 ± 0.02) than GATK (2.04 ± 0.07) (p < 0.001), suggesting that DeepVariant proportionally called more true positives. The concordance rate between the 2 pipelines was 88.73%. Sixty-three disease-causing variants were detected in the 80 trios. Among them, DeepVariant detected 62 variants, and GATK detected 61 variants. The one variant called by DeepVariant but not GATK HaplotypeCaller might have been missed by GATK HaplotypeCaller due to low coverage. OTC exon 2 (139 bp) deletion was not detected by either method. Mendelian error rate calculation is an effective way to evaluate variant callers. By this method, DeepVariant outperformed GATK, while the two pipelines performed equally in other parameters.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3