Author:
Emam Hossam E.,Hamouda Tamer,Emam El-Amir M.,Darwesh Osama M.,Ahmed Hanan B.
Abstract
AbstractNanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5–15% wt/vol, honey like solution, 678–834 mPa s), thermal treatment for 2–4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300–400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.
Funder
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献