Sliding principal component and dynamic reward reinforcement learning based IIoT attack detection

Author:

Ellappan Vijayan,Mahendran Anand,Subramanian Murali,Jotheeswaran Jeevanandam,Khadidos Adil O.,Khadidos Alaa O.,Selvarajan Shitharth

Abstract

AbstractThe Internet of Things (IoT) involves the gathering of all those devices that connect to the Internet with the purpose of collecting and sharing data. The application of IoT in the different sectors, including health, industry has also picked up the threads to augment over the past few years. The IoT and, by integrity, the IIoT, are found to be highly susceptible to different types of threats and attacks owing to the networks nature that in turn leads to even poor outcomes (i.e., increasing error rate). Hence, it is critical to design attack detection systems that can provide the security of IIoT networks. To overcome this research work of IIoT attack detection in large amount of evolutions is failed to determine the certain attacks resulting in a minimum detection performance, reinforcement learning-based attack detection method called sliding principal component and dynamic reward reinforcement learning (SPC–DRRL) for detecting various IIoT network attacks is introduced. In the first stage of this research methodology, preprocessing of raw TON_IoT dataset is performed by employing min–max normalization scaling function to obtain normalized values with same scale. Next, with the processed sample data as output, to extract data from multi-sources (i.e., different service profiles from the dataset), a robust log likelihood sliding principal component-based feature extraction algorithm is applied with an arbitrary size sliding window to extract computationally-efficient features. Finally, dynamic reward reinforcement learning-based IIoT attack detection model is presented to control the error rate involved in the design. Here, with the design of dynamic reward function and introducing incident repository that not only generates the reward function in an arbitrary fashion but also stores the action results in the incident repository for the next training, therefore reducing the attack detection error rate. Moreover, an IIoT attack detection system based on SPC–DRRL is constructed. Finally, we verify the algorithm on the ToN_IoT dataset of University of New South Wales Australia. The experimental results show that the IIoT attack detection time and overhead along with the error rate are reduced considerably with higher accuracy than that of traditional reinforcement learning methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3