Development of a monitoring system for disassembled towers with internal suspension poles

Author:

Zhang Long-Bin,Tang Bo,Li Kai,Shang Zhi-Yu,Wang Yue,Li Heng-Bo

Abstract

AbstractThe traditional construction monitoring methods of suspended pole-mounted decomposed towers are mostly manual monitoring. The monitoring personnel has multiple blind spots, and the possibility of misjudgment based on personal experience is relatively large. It is difficult to ensure the construction safety of the suspended pole decomposing tower. For this reason, combined with the current power Internet of Things technology, this paper develops an intelligent monitoring system for suspended pole-mounted decomposing towers. According to the construction technology and its safety requirements of inner suspension derrick for transmission tower erection in sections, this system is classified into intellisense layer, wireless transport layer and information integration layer. According to the physical characteristics of the seven major risk points of the inner suspension pole group tower, the intellisense layer developed corresponding sensing equipment to obtain risk information. In the wireless transport layer, the ZigBee and 4G communication technologies are selected to interconnect self-constituted LAN and 4G wide area networks, to complete on-site data interaction and long-distance transmission. In the information integration layer, the force of cable, the inclination and height of derrick, and the distance between derrick and tower are determined. The system has been verified by the 500 kV delivery project of Fujian Zhouning Pumped Storage Power Station. The average error of critical monitoring point data is 4.14%, and the average data transmission delays in the far and near fields of the system are 18 ms and 176 ms.

Funder

Hubei Provincial Key Research and Development Program Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of intelligent traction walking plate for tension overhead construction;The Journal of Engineering;2024-07

2. Safety Analysis and Prediction for Transmission Tower Construction;2023 IEEE International Conference on Development and Learning (ICDL);2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3