Author:
Sato Kazuhiko,Mori Goro,Kiyosu Takahiro,Yaji Toyonari,Nakanishi Koji,Ohta Toshiaki,Okamoto Kuniaki,Orikasa Yuki
Abstract
AbstractThe high anodic stability of electrolytes for rechargeable magnesium batteries enables the use of new positive electrodes, which can contribute to an increase in energy density. In this study, novel Ph3COMgCl-, Ph3SiOMgCl-, and B(OMgCl)3-based electrolytes were prepared with AlCl3 in triglyme. The Ph3COMgCl-based electrolyte showed anodic stability over 3.0 V vs. Mg but was chemically unstable, whereas the Ph3SiOMgCl-based electrolyte was chemically stable but featured lower anodic stability than the Ph3COMgCl-based electrolyte. Advantageously, the B(OMgCl)3-based electrolyte showed both anodic stability over 3.0 V vs. Mg (possibly due to the Lewis acidic nature of B in B(OMgCl)3) and chemical stability (possibly due to the hard acid character of B(OMgCl)3). B(OMgCl)3, which was prepared by reacting boric acid with a Grignard reagent, was characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and X-ray absorption spectroscopy (XAS). The above analyses showed that B(OMgCl)3 has a complex structure featuring coordinated tetrahydrofuran molecules. 27Al NMR spectroscopy and Al K-edge XAS showed that when B(OMgCl)3 was present in the electrolyte, AlCl3 and AlCl2+ species were converted to AlCl4−. Mg K-edge XAS showed that the Mg species in B(OMgCl)3-based electrolytes are electrochemically positive. As a rechargeable magnesium battery, the full cell using the B(OMgCl)3-based electrolyte and a Mo6S8 Chevrel phase cathode showed stable charge-discharge cycles. Thus, B(OMgCl)3-based electrolytes, the anodic stability of which can be increased to ~3 V by the use of appropriate battery materials, are well suited for the development of practical Mg battery cathodes.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献