Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias

Author:

Kolk Maarten Z. H.,Ruipérez-Campillo Samuel,Allaart Cornelis P.,Wilde Arthur A. M.,Knops Reinoud E.,Narayan Sanjiv M.,Tjong Fleur V. Y., ,Raijmakers Femke D.,Van Der Lingen Anne-Lotte C. J.,Götte Marco J. W.,Selder Jasper L.,Alvarez-Florez Laura,Išgum Ivana,Bekkers Erik J.

Abstract

AbstractThe efficacy of an implantable cardioverter-defibrillator (ICD) in patients with a non-ischaemic cardiomyopathy for primary prevention of sudden cardiac death is increasingly debated. We developed a multimodal deep learning model for arrhythmic risk prediction that integrated late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI), electrocardiography (ECG) and clinical data. Short-axis LGE-MRI scans and 12-lead ECGs were retrospectively collected from a cohort of 289 patients prior to ICD implantation, across two tertiary hospitals. A residual variational autoencoder was developed to extract physiological features from LGE-MRI and ECG, and used as inputs for a machine learning model (DEEP RISK) to predict malignant ventricular arrhythmia onset. In the validation cohort, the multimodal DEEP RISK model predicted malignant ventricular arrhythmias with an area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval (CI) 0.71–0.96), a sensitivity of 0.98 (95% CI 0.75–1.00) and a specificity of 0.73 (95% CI 0.58–0.97). The models trained on individual modalities exhibited lower AUROC values compared to DEEP RISK [MRI branch: 0.80 (95% CI 0.65–0.94), ECG branch: 0.54 (95% CI 0.26–0.82), Clinical branch: 0.64 (95% CI 0.39–0.87)]. These results suggest that a multimodal model achieves high prognostic accuracy in predicting ventricular arrhythmias in a cohort of patients with non-ischaemic systolic heart failure, using data collected prior to ICD implantation.

Funder

Dutch Research Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3