Author:
Nakanishi Naoki,Otake Yoshito,Hiasa Yuta,Gu Yi,Uemura Keisuke,Takao Masaki,Sugano Nobuhiko,Sato Yoshinobu
Abstract
AbstractThis paper presents methods of decomposition of musculoskeletal structures from radiographs into multiple individual muscle and bone structures. While existing solutions require dual-energy scan for the training dataset and are mainly applied to structures with high-intensity contrast, such as bones, we focused on multiple superimposed muscles with subtle contrast in addition to bones. The decomposition problem is formulated as an image translation problem between (1) a real X-ray image and (2) multiple digitally reconstructed radiographs, each of which contains a single muscle or bone structure, and solved using unpaired training based on the CycleGAN framework. The training dataset was created via automatic computed tomography (CT) segmentation of muscle/bone regions and virtually projecting them with geometric parameters similar to the real X-ray images. Two additional features were incorporated into the CycleGAN framework to achieve a high-resolution and accurate decomposition: hierarchical learning and reconstruction loss with the gradient correlation similarity metric. Furthermore, we introduced a new diagnostic metric for muscle asymmetry directly measured from a plain X-ray image to validate the proposed method. Our simulation and real-image experiments using real X-ray and CT images of 475 patients with hip diseases suggested that each additional feature significantly enhanced the decomposition accuracy. The experiments also evaluated the accuracy of muscle volume ratio measurement, which suggested a potential application to muscle asymmetry assessment from an X-ray image for diagnostic and therapeutic assistance. The improved CycleGAN framework can be applied for investigating the decomposition of musculoskeletal structures from single radiographs.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献