Decomposition of musculoskeletal structures from radiographs using an improved CycleGAN framework

Author:

Nakanishi Naoki,Otake Yoshito,Hiasa Yuta,Gu Yi,Uemura Keisuke,Takao Masaki,Sugano Nobuhiko,Sato Yoshinobu

Abstract

AbstractThis paper presents methods of decomposition of musculoskeletal structures from radiographs into multiple individual muscle and bone structures. While existing solutions require dual-energy scan for the training dataset and are mainly applied to structures with high-intensity contrast, such as bones, we focused on multiple superimposed muscles with subtle contrast in addition to bones. The decomposition problem is formulated as an image translation problem between (1) a real X-ray image and (2) multiple digitally reconstructed radiographs, each of which contains a single muscle or bone structure, and solved using unpaired training based on the CycleGAN framework. The training dataset was created via automatic computed tomography (CT) segmentation of muscle/bone regions and virtually projecting them with geometric parameters similar to the real X-ray images. Two additional features were incorporated into the CycleGAN framework to achieve a high-resolution and accurate decomposition: hierarchical learning and reconstruction loss with the gradient correlation similarity metric. Furthermore, we introduced a new diagnostic metric for muscle asymmetry directly measured from a plain X-ray image to validate the proposed method. Our simulation and real-image experiments using real X-ray and CT images of 475 patients with hip diseases suggested that each additional feature significantly enhanced the decomposition accuracy. The experiments also evaluated the accuracy of muscle volume ratio measurement, which suggested a potential application to muscle asymmetry assessment from an X-ray image for diagnostic and therapeutic assistance. The improved CycleGAN framework can be applied for investigating the decomposition of musculoskeletal structures from single radiographs.

Funder

MEXT/JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3