Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes

Author:

Ghanbari Moheb Seraj Rahele,Tohidfar Masoud,Azimzadeh Irani Maryam,Esmaeilzadeh-Salestani Keyvan,Moradian Toktam,Ahmadikhah Asadollah,Behnamian Mahdi

Abstract

AbstractMilk thistle is an oil and medicinal crop known as an alternative oil crop with a high level of unsaturated fatty acids, which makes it a favorable edible oil for use in food production. To evaluate the importance of Milk thistle lipids in drought tolerance, an experiment was performed in field conditions under three different water deficit levels (Field capacity (FC), 70% FC and 40% FC). After harvesting seeds of the plant, their oily and methanolic extracts were isolated, and subsequently, types and amounts of lipids were measured using GC–MS. Genes and enzymes engaged in biosynthesizing of these lipids were identified and their expression in Arabidopsis was investigated under similar conditions. The results showed that content of almost all measured lipids of milk thistle decreased under severe drought stress, but genes (belonged to Arabidopsis), which were involved in their biosynthetic pathway showed different expression patterns. Genes biosynthesizing lipids, which had significant amounts were selected and their gene and metabolic network were established. Two networks were correlated, and for each pathway, their lipids and respective biosynthesizing genes were grouped together. Four up-regulated genes including PXG3, LOX2, CYP710A1, PAL and 4 down-regulated genes including FATA2, CYP86A1, LACS3, PLA2-ALPHA were selected. The expression of these eight genes in milk thistle was similar to Arabidopsis under drought stress. Thus, PXG3, PAL, LOX2 and CYP86A1 genes that increased expression were selected for protein analysis. Due to the lack of protein structure of these genes in the milk thistle, modeling homology was performed for them. The results of molecular docking showed that the four proteins CYP86A1, LOX2, PAL and PXG3 bind to ligands HEM, 11O, ACT and LIG, respectively. HEM ligand was involved in production of secondary metabolites and dehydration tolerance, and HEM binding site remained conserved in various plants. CA ligands were involved in synthesis of cuticles and waxes. Overall, this study confirmed the importance of lipids in drought stress tolerance in milk thistle.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3