Fungal cell barriers and organelles are disrupted by polyhexamethylene biguanide (PHMB)

Author:

Ntow-Boahene Winnie,Papandronicou Isabelle,Miculob Josephous,Good Liam

Abstract

AbstractThe similarities between fungal and mammalian cells pose inherent challenges for the development of treatments for fungal infections, due to drug crossover recognition of host drug targets by antifungal agents. Thus, there are a limited number of drug classes available for treatment. Treatment is further limited by the acquisition and dissemination of antifungal resistance which contributes to the urgent need of new therapies. Polyhexamethylene biguanide (PHMB) is a cationic antimicrobial polymer with bactericidal, parasiticidal and fungicidal activities. The antifungal mechanism of action appears to involve preferential mechanical disruption of microbial cell structures, offering an alternative to conventional antifungals. However, the antifungal mechanisms have been little studied. The aim of this study was to characterise PHMB’s activities on selected yeast (Saccharomyces cerevisiae, Candida albicans) and filamentous fungal species (Fusarium oxysporum, Penicillium glabrum). Fungal membrane disruption, cell entry and intracellular localisation activities of PHMB were evaluated using viability probe entry and polymer localisation studies. We observed that PHMB initially permeabilises fungal cell membranes and then accumulates within the cytosol. Once in the cytosol, it disrupts the nuclear membrane, leading to DNA binding and fragmentation. The electrostatic interaction of PHMB with membranes suggests other intracellular organelles could be potential targets of its action. Overall, the results indicate multiple antifungal mechanisms, which may help to explain its broad-spectrum efficacy. A better understanding of PHMB’s mechanism(s) of action may aid the development of improved antifungal treatment strategies.

Funder

Biotechnology and Biological Sciences Research Council

Blueberry therapeutics Ltd.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3