Low extracellular magnesium induces phenotypic and metabolic alterations in C2C12-derived myotubes

Author:

Zocchi Monica,Bartolini Marco,Maier Jeanette A.,Castiglioni Sara

Abstract

AbstractMagnesium (Mg) has a pivotal role in upholding skeletal muscle health and optimizing performance. Its deficiency decreases muscle strength, and an association has been reported between Mg intake and sarcopenia. To gain a comprehensive understanding of the repercussions arising from low Mg concentrations on muscle behavior, we employed an in vitro model utilizing C2C12-derived myotubes. Myotubes cultured in low Mg show a significant reduction of thickness and a concomitant down-regulation of myosin heavy chain (MyHC), Myog and Myomixer. In parallel, myotubes shape their metabolism. Glycolysis is inhibited and beta-oxidation increases. These metabolic changes are consistent with the increase of MyHC I (slow) vs. MyHC II (fast) expression. We identified an essential player in these changes, namely nitric oxide (NO), as the increase in NO production appeared to orchestrate the observed modifications in myotube behavior and metabolism under low Mg conditions. Understanding these underlying mechanisms may pave the way for targeted interventions to ameliorate muscle-related conditions associated with Mg deficiency and contribute to enhancing overall muscle health and function.

Funder

Università di Milano

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3