Abstract
AbstractHyperspectral endoscopy has shown its potential to improve disease diagnosis in gastrointestinal tracts. Recent approaches in developing hyperspectral endoscopy are mainly focusing on enhancing image speed and quality of spectral information under a clinical environment, but there are many issues in obtaining consistent spectral information due to complicated imaging conditions, including imaging angle, non-uniform illumination, working distance, and low reflected signal. We quantitatively investigated the effect of imaging angle on the distortion of spectral information by exploiting a bifurcated fiber, spectrometer, and tissue-mimicking phantom. Spectral distortion becomes severe as increasing the angle of the imaging fiber or shortening camera exposure time for fast image acquisition. Moreover, spectral ranges from 450 to 550 nm are more susceptible to the angle-dependent spectral distortion than longer spectral ranges. Therefore, imaging angles close to normal and longer target spectral ranges with enough detector exposure time could minimize spectral distortion in hyperspectral endoscopy. These findings will help implement clinical HSI endoscopy for the robust and accurate measurement of spectral information from patients in vivo.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献