Element-specific contributions to improved magnetic heating of theranostic CoFe2O4 nanoparticles decorated with Pd

Author:

Shams S. Fatemeh,Schmitz Detlef,Smekhova Alevtina,Ghazanfari Mohammad Reza,Giesen Margret,Weschke Eugen,Chen Kai,Luo Chen,Radu Florin,Schmitz-Antoniak Carolin

Abstract

AbstractDecoration with Pd clusters increases the magnetic heating ability of cobalt ferrite (CFO) nanoparticles by a factor of two. The origin of this previous finding is unraveled by element-specific X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) combined with atomic multiplet simulations and density functional theory (DFT) calculations. While the comparison of XAS spectra with atomic multiplet simulations show that the inversion degree is not affected by Pd decoration and, thus, can be excluded as a reason for the improved heating performance, XMCD reveals two interrelated responsible sources: significantly larger Fe and Co magnetic moments verify an increased total magnetization which enhances the magnetic heating ability. This is accompanied by a remarkable change in the field-dependent magnetization particularly for Co ions which exhibit an increased low-field susceptibility and a reduced spin canting behavior in higher magnetic fields. Using DFT calculations, these findings are explained by reduced superexchange between ions on octahedral lattice sites via oxygen in close vicinity of Pd, which reinforces the dominating antiparallel superexchange interaction between ions on octahedral and tetrahedral lattice sites and thus reduces spin canting. The influence of the delocalized nature of Pd 4d electrons on the neighboring ions is discussed and the conclusions are illustrated with spin density isosurfaces of the involved ions. The presented results pave the way to design nanohybrids with tailored electronic structure and magnetic properties.

Funder

Helmholtz Association

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3