Author:
Pascucci David,Ruethemann Nadia,Plomp Gijs
Abstract
AbstractHuman observers can accurately estimate statistical summaries from an ensemble of multiple stimuli, including the average size, hue, and direction of motion. The efficiency and speed with which statistical summaries are extracted suggest an automatic mechanism of ensemble coding that operates beyond the capacity limits of attention and memory. However, the extent to which ensemble coding reflects a truly parallel and holistic mode of processing or a non-uniform and biased integration of multiple items is still under debate. In the present work, we used a technique, based on a Spatial Weighted Average Model (SWM), to recover the spatial profile of weights with which individual stimuli contribute to the estimated average during mean size adjustment tasks. In a series of experiments, we derived two-dimensional SWM maps for ensembles presented at different retinal locations, with different degrees of dispersion and under different attentional demands. Our findings revealed strong spatial anisotropies and leftward biases in ensemble coding that were organized in retinotopic reference frames and persisted under attentional manipulations. These results demonstrate an anisotropic spatial contribution to ensemble coding that could be mediated by the differential activation of the two hemispheres during spatial processing and scene encoding.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献