Effect of apigetrin in pseudo-SARS-CoV-2-induced inflammatory and pulmonary fibrosis in vitro model

Author:

Han Hengmin,Kim Jung-Eun,Lee Hyo-Jeong

Abstract

AbstractSARS-CoV-2 has become a global public health problem. Acute respiratory distress syndrome (ARDS) is the leading cause of death due to the SARS-CoV-2 infection. Pulmonary fibrosis (PF) is a severe and frequently reported COVID-19 sequela. In this study, an in vitro model of ARDS and PF caused by SARS-CoV-2 was established in MH-S, THP-1, and MRC-5 cells using pseudo-SARS-CoV-2 (PSCV). Expression of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and HIF-1α was increased in PSCV-infected MH-S and THP-1 cells, ARDS model, consistent with other profiling data in SARS-CoV-2-infected patients have been reported. Hypoxia-inducible factor-1 alpha (HIF-1α) siRNA and cobalt chloride were tested using this in vitro model. HIF-1α knockdown reduces inflammation caused by PSCV infection in MH-S and THP-1 cells and lowers elevated levels of CTGF, COLA1, and α-SMA in MRC-5 cells exposed to CPMSCV. Furthermore, apigetrin, a glycoside bioactive dietary flavonoid derived from several plants, including Crataegus pinnatifida, which is reported to be a HIF-1α inhibitor, was tested in this in vitro model. Apigetrin significantly reduced the increased inflammatory cytokine (IL-6, IL-1β, and TNF-α) expression and secretion by PSCV in MH-S and THP-1 cells. Apigetrin inhibited the binding of the SARS-CoV-2 spike protein RBD to the ACE2 protein. An in vitro model of PF induced by SARS-CoV-2 was produced using a conditioned medium of THP-1 and MH-S cells that were PSCV-infected (CMPSCV) into MRC-5 cells. In a PF model, CMPSCV treatment of THP-1 and MH-S cells increased cell growth, migration, and collagen synthesis in MRC-5 cells. In contrast, apigetrin suppressed the increase in cell growth, migration, and collagen synthesis induced by CMPSCV in THP-1 and MH-S MRC-5 cells. Also, compared to control, fibrosis-related proteins (CTGF, COLA1, α-SMA, and HIF-1α) levels were over two-fold higher in CMPSV-treated MRC-5 cells. Apigetrin decreased protein levels in CMPSCV-treated MRC-5 cells. Thus, our data suggest that hypoxia-inducible factor-1 alpha (HIF-1α) might be a novel target for SARS-CoV-2 sequela therapies and apigetrin, representative of HIF-1alpha inhibitor, exerts anti-inflammatory and PF effects in PSCV-treated MH-S, THP-1, and CMPVSC-treated MRC-5 cells. These findings indicate that HIF-1α inhibition and apigetrin would have a potential value in controlling SARS-CoV-2-related diseases.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3