An emergent constraint on the thermal sensitivity of photosynthesis and greenness in the high latitude northern forests

Author:

Liu Junjie,Wennberg Paul O.

Abstract

AbstractDespite the general consensus that the warming over the high latitudes northern forests (HLNF) has led to enhanced photosynthetic activity and contributed to the greening trend, isolating the impact of temperature increase on photosynthesis and greenness has been difficult due to the concurring influence of the CO2 fertilization effect. Here, using an ensemble of simulations from biogeochemical models that have contributed to the Trends in Net Land Atmosphere Carbon Exchange project (TRENDY), we identify an emergent relationship between the simulation of the climate-driven temporal changes in both gross primary productivity (GPP) and greenness (Leaf Area Index, LAI) and the model’s spatial sensitivity of these quantities to growing-season (GS) temperature. Combined with spatially-resolved observations of LAI and GPP, we estimate that GS-LAI and GS-GPP increase by 17.0 ± 2.4% and 24.0 ± 3.0% per degree of warming, respectively. The observationally-derived sensitivities of LAI and GPP to temperature are about 40% and 71% higher, respectively, than the mean of the ensemble of simulations from TRENDY, primarily due to the model underestimation of the sensitivity of light use efficiency to temperature. We estimate that the regional mean GS-GPP increased 28.2 ± 5.1% between 1983–1986 and 2013–2016, much larger than the 5.8 ± 1.4% increase from the CO2 fertilization effect implied by Wenzel et al. This suggests that warming, not CO2 fertilization, is primarily responsible for the observed dramatic changes in the HLNF biosphere over the last century.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3