Abstract
AbstractHeavy metals released from kerogen to produced water during oil/gas extraction have caused major enviromental concerns. To curtail water usage and production in an operation and to use the same process for carbon sequestration, supercritical CO2 (scCO2) has been suggested as a fracking fluid or an oil/gas recovery agent. It has been shown previously that injection of scCO2 into a reservoir may cause several chemical and physical changes to the reservoir properties including pore surface wettability, gas sorption capacity, and transport properties. Using molecular dynamics simulations, we here demonstrate that injection of scCO2 might lead to desorption of physically adsorbed metals from kerogen structures. This process on one hand may impact the quality of produced water. On the other hand, it may enhance metal recovery if this process is used for in-situ extraction of critical metals from shale or other organic carbon-rich formations such as coal.
Publisher
Springer Science and Business Media LLC