Author:
Zhao Feifei,Zeng Yi,Guo Aike,Su Haifeng,Xu Bo
Abstract
Abstract
It has been evidenced that vision-based decision-making in Drosophila consists of both simple perceptual (linear) decision and value-based (non-linear) decision. This paper proposes a general computational spiking neural network (SNN) model to explore how different brain areas are connected contributing to Drosophila linear and nonlinear decision-making behavior. First, our SNN model could successfully describe all the experimental findings in fly visual reinforcement learning and action selection among multiple conflicting choices as well. Second, our computational modeling shows that dopaminergic neuron-GABAergic neuron-mushroom body (DA-GABA-MB) works in a recurrent loop providing a key circuit for gain and gating mechanism of nonlinear decision making. Compared with existing models, our model shows more biologically plausible on the network design and working mechanism, and could amplify the small differences between two conflicting cues more clearly. Finally, based on the proposed model, the UAV could quickly learn to make clear-cut decisions among multiple visual choices and flexible reversal learning resembling to real fly. Compared with linear and uniform decision-making methods, the DA-GABA-MB mechanism helps UAV complete the decision-making task with fewer steps.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
Beijing Municipal Commission of Science and Technology
Basic Frontier Science Research Program of Chinese Academy of Sciences
Key Research Program of Frontier Sciences, CAS
Shanghai Municipal Science and Technology Major Project
Strategic Priority Research Program of Chinese Academy of Science
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献