Serum branched-chain amino acids are associated with leukocyte telomere length and frailty based on residents from Guangxi longevity county

Author:

Zhang Ying,Zhou Qi,Yang Ruiyue,Hu Caiyou,Huang Zezhi,Zheng Chenguang,Liang Qinghua,Gong Ranhui,Zhu Xiaoquan,Gong Huan,Yuan Huiping,Chen Chen,Li Xianghui,Zhang Nan,Yang Ze,Sun Liang

Abstract

AbstractBranched-chain amino acids (BCAAs) and telomere length are biologically associated with healthy aging. However, the association between them and their interaction on frailty remain unclear in humans. Here, a cross-sectional study based on residents from Guangxi longevity county was conducted to investigate the association of serum BCAAs, peripheral leukocyte telomere length (LTL) and frailty. A total of 1,034 subjects aged 20 to 110 years were recruited in the study. The real-time qPCR method and a targeted metabolomics approach based on isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) method were used for measurement of LTL and BCAAs, respectively. A frailty score defined as the proportion of accumulated deficits based on 24 aging-related items was used assess the health status of elderly subjects. First, we found that a higher concentration of BCAAs was significantly associated with longer LTL only in middle-aged subjects, independent of age and BMI (P < 0.05). In the oldest-old subjects, we identified a significantly inverse association between BCAAs and frailty score (P < 0.001), even after adjustment for age and BMI (P < 0.05). Additionally, we recognized a statistically significant synergetic interaction between BCAAs and LTL on frailty score in the oldest-old subjects by the general linear model (P = 0.042), although we did not find any significant association between LTL and frailty score. In summary, our findings suggest a potentially protective effect of circulating BCAAs on LTL and frailty based on the subjects from longevity county in East Asia and indicate a potential synergetic interaction between BCAAs and LTL in healthy aging.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3