Author:
Pant Neha,Toshniwal Durga,Gurjar Bhola Ram
Abstract
AbstractAccurate prediction of Dissolved Oxygen (DO) is an integral part of water resource management. This study proposes a novel approach combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) with AdaBoost and deep learning for multi-step forecasting of DO. CEEMDAN generates Intrinsic Mode Functions (IMFs) with different frequencies, capturing non-linear and non-stationary characteristics of the data. The high-frequency and medium-frequency IMFs, characterized by complex patterns and frequent changes over time, are predicted using Adaboost with Bidirectional Long Short-Term Memory (BiLSTM) as the base estimator. The low-frequency IMFs, characterized by relatively simple patterns, are predicted using standalone Long Short-Term Memory (LSTM). The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is tested on data from ten stations of river Ganga. We compare the results with six models without decomposition and four models utilizing decomposition. Experimental results show that using a tailored prediction technique based on each IMF’s distinctive features leads to more accurate forecasts. CEEMDAN-AdaBoost-BiLSTM-LSTM outperforms CEEMDAN-BiLSTM with an average improvement of 25.458% for RMSE and 37.390% for MAE. Compared with CEEMDAN-AdaBoost-BiLSTM, an average improvement of 20.779% for RMSE and 28.921% for MAE is observed. Diebold-Mariano test and t-test suggest a statistically significant difference in performance between the proposed and compared models.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献