Author:
Duan Jilu,Zhang Yaping,Yao Yongwei,Fu Qingyang,Zhang Bing,Tsang P. W. M.,Poon Ting-Chung
Abstract
AbstractAdaptive Optical Scanning Holography (AOSH) represents a powerful technique that employs an adaptive approach to selectively omit certain lines within holograms, guided by the utilization of Normalized-Mean-Error (NME) as a predictive measure. This approach effectively diminishes scanning time and conserves the storage space required for data preservation. However, there exists alternative methods superior to NME in terms of evaluating the model’s efficacy. This paper introduces two novel methods, namely Normalized-Root-Mean-Square-Error (NRMSE) and Normalized-Mean-Square-Error (NMSE), into the AOSH system, leading to the development of NRMSE-AOSH and NMSE-AOSH. These new systems aim to further minimize duration of holographic recording. Through a comparative analysis of hologram lines between the two newly proposed AOSH systems and the original AOSH, we demonstrate that both NRMSE-AOSH and NMSE-AOSH effectively reduce the number of hologram lines while maintaining the hologram’s informational content. Among the three methods, our two new methods exhibit better performance compared with the original method.
Funder
National Natural Science Foundation of China
Yunnan Provincial Science and Technology Department
Publisher
Springer Science and Business Media LLC