Vitamin E is necessary for zebrafish nervous system development

Author:

Head Brian,La Du Jane,Tanguay Robyn L.,Kioussi Chrissa,Traber Maret G.

Abstract

AbstractVitamin E (VitE) deficiency results in embryonic lethality. Knockdown of the gene ttpa encoding for the VitE regulatory protein [α-tocopherol transfer protein (α-TTP)] in zebrafish embryos causes death within 24 h post-fertilization (hpf). To test the hypothesis that VitE, not just α-TTP, is necessary for nervous system development, adult 5D strain zebrafish, fed either VitE sufficient (E+) or deficient (E−) diets, were spawned to obtain E+ and E− embryos, which were subjected to RNA in situ hybridization and RT-qPCR. Ttpa was expressed ubiquitously in embryos up to 12 hpf. Early gastrulation (6 hpf) assessed by goosecoid expression was unaffected by VitE status. By 24 hpf, embryos expressed ttpa in brain ventricle borders, which showed abnormal closure in E− embryos. They also displayed disrupted patterns of paired box 2a (pax2a) and SRY-box transcription factor 10 (sox10) expression in the midbrain-hindbrain boundary, spinal cord and dorsal root ganglia. In E− embryos, the collagen sheath notochord markers (col2a1a and col9a2) appeared bent. Severe developmental errors in E− embryos were characterized by improper nervous system patterning of the usually carefully programmed transcriptional signals. Histological analysis also showed developmental defects in the formation of the fore-, mid- and hindbrain and somites of E− embryos at 24 hpf. Ttpa expression profile was not altered by the VitE status demonstrating that VitE itself, and not ttpa, is required for development of the brain and peripheral nervous system in this vertebrate embryo model.

Funder

OSU Foundation, Linus Pauling Institute, Oregon State University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3