Author:
Weber Kenneth A.,Abbott Rebecca,Bojilov Vivie,Smith Andrew C.,Wasielewski Marie,Hastie Trevor J.,Parrish Todd B.,Mackey Sean,Elliott James M.
Abstract
AbstractMuscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups (left and right muscles segmented separately, 14 muscles total) from Dixon MRI scans (n = 17, 17 scans < 2 weeks post motor vehicle collision (MVC), and 17 scans 12 months post MVC). The CNN MFI measures demonstrated high test reliability and accuracy in an independent testing dataset (n = 18, 9 scans < 2 weeks post MVC, and 9 scans 12 months post MVC). Using the CNN in 84 participants with scans < 2 weeks post MVC (61 females, 23 males, age = 34.2 ± 10.7 years) differences in MFI between the muscle groups and relationships between MFI and sex, age, and body mass index (BMI) were explored. Averaging across all muscles, females had significantly higher MFI than males (p = 0.026). The deep cervical muscles demonstrated significantly greater MFI than the more superficial muscles (p < 0.001), and only MFI within the deep cervical muscles was moderately correlated to age (r > 0.300, p ≤ 0.001). CNN’s allow for the accurate and rapid, quantitative assessment of the composition of the architecturally complex muscles traversing the cervical spine. Acknowledging the wider reports of MFI in cervical spine disorders and the time required to manually segment the individual muscles, this CNN may have diagnostic, prognostic, and predictive value in disorders of the cervical spine.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963), 117–171 (2015).
2. Hoy, D., Brooks, P., Blyth, F. & Buchbinder, R. The epidemiology of low back pain. Best Pract. Res. Clin. Rheumatol. 24(6), 769–781 (2010).
3. Hoy, D. et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 73(6), 968–974 (2014).
4. Hoy, D. et al. The global burden of neck pain: estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 73(7), 1309–1315 (2014).
5. Elliott, J. M. et al. Does overall cervical spine pathology relate to the clinical heterogeneity of chronic whiplash? Am. J. Emerg. Med. 38(5), 869–873 (2020).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献