Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks

Author:

Park Junyoung,Kim Dong In,Choi Byoungjo,Kang Woochul,Kwon Hyung Wook

Abstract

AbstractImage-based automatic classification of vector mosquitoes has been investigated for decades for its practical applications such as early detection of potential mosquitoes-borne diseases. However, the classification accuracy of previous approaches has never been close to human experts’ and often images of mosquitoes with certain postures and body parts, such as flatbed wings, are required to achieve good classification performance. Deep convolutional neural networks (DCNNs) are state-of-the-art approach to extracting visual features and classifying objects, and, hence, there exists great interest in applying DCNNs for the classification of vector mosquitoes from easy-to-acquire images. In this study, we investigated the capability of state-of-the-art deep learning models in classifying mosquito species having high inter-species similarity and intra-species variations. Since no off-the-shelf dataset was available capturing the variability of typical field-captured mosquitoes, we constructed a dataset with about 3,600 images of 8 mosquito species with various postures and deformation conditions. To further address data scarcity problems, we investigated the feasibility of transferring general features learned from generic dataset to the mosquito classification. Our result demonstrated that more than 97% classification accuracy can be achieved by fine-tuning general features if proper data augmentation techniques are applied together. Further, we analyzed how this high classification accuracy can be achieved by visualizing discriminative regions used by deep learning models. Our results showed that deep learning models exploit morphological features similar to those used by human experts.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3