Optimization of oil yield of Pelargonium graveolens L'Hér using Box-Behnken design in relation to its antimicrobial activity and in silico study

Author:

Wafa Sanagik Sabry Abu ElORCID,El-Ashmawy Ahmed A.ORCID,Kassem Hanaa A. H.,Eissa Ibrahim H.,Abu-Elghait Mohammed,Younis Nermin A.,Younis Inas Y.ORCID

Abstract

AbstractPelargonium graveolens L'Hér is an important species of genus Pelargonium with an economic value. The unique rose scent of its oil is used in perfume and cosmetic industry. The oil is characterized by the presence of citronellol, geraniol and rose oxide. Fresh aerial parts of P. graveolens at GC–MS analysis of four seasons revealed that autumn constituted the highest yield of the oil. For the first time, optimization of the yield of extracted oil of P. graveolens was performed employing 3-level Box-Behnken design using 3-factors. The GC–MS analysis of the essential oil was performed for the 17-runs. The optimized extraction of the oil was performed employing numerical optimization and studied for antimicrobial, Minimum Inhibitory Concentration (MIC) and biofilm inhibitory activities. The 3 factors followed rank (plant material amount > water volume > NaCl percent in water), in their magnitude of effect on increasing yield of the oil. Increasing the plant material amount increased the yield of the oil by 6-folds compared to NaCl percent in water. The optimized yield of oil (4 ml) was obtained from extraction criteria (150 g of plant, 750 ml of water and 3.585% (26.85 g) of NaCl). Computational docking was performed to overcome the multi-drug resistant Gram-negative bacilli targeting undecaprenyl pyrophosphate synthase (UPPS). The optimized oil exhibited a promising inhibitory activity against Gram-negative bacteria (K. pneumonia and P. aeruginosa) with significant antibiofilm action (P < 0.05). Moreover, it exerted a synergistic effect when combined with various antibiotics (Cefoxitin, Cloxacillin, Oxacillin and Vancomycin) against MRSA clinical strains.

Funder

Ahram Canadian University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3