Machine learning prediction of academic collaboration networks

Author:

Resce Giuliano,Zinilli Antonio,Cerulli Giovanni

Abstract

AbstractWe investigate the different roles played by nodes’ network and non-network attributes in explaining the formation of European university collaborations from 2011 to 2016, in three European Research Council (ERC) domains: Social Sciences and Humanities (SSH), Physical and Engineering Sciences (PE), Life Sciences (LS), as well as multidisciplinary collaborations. On link formation in collaboration networks, existing research has not yet compared and simultaneously examined both network and non-network attributes. Using four machine learning predictive algorithms (LASSO, Neural Network, Gradient Boosting, and Random Forest) our results show that, over various model specifications: (i) best model link formation accuracy is larger than 80%, (ii) among the non-network attributes, public funding plays an important role in PE and LS, (iii) network attributes count more than non-network attributes for the formation, sensibly increasing accuracy, (iv) feature-importance scores show a different ordering in the four domains, thus signalling different modes of knowledge production and transmission taking place within these different scientific communities.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3