Impact of rescanning and repositioning on radiomic features employing a multi-object phantom in magnetic resonance imaging

Author:

Bernatz Simon,Zhdanovich Yauheniya,Ackermann Jörg,Koch Ina,Wild Peter J.,dos Santos Daniel Pinto,Vogl Thomas J.,Kaltenbach Benjamin,Rosbach Nicolas

Abstract

AbstractOur purpose was to analyze the robustness and reproducibility of magnetic resonance imaging (MRI) radiomic features. We constructed a multi-object fruit phantom to perform MRI acquisition as scan-rescan using a 3 Tesla MRI scanner. We applied T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE), T2w turbo spin-echo (TSE), T2w fluid-attenuated inversion recovery (FLAIR), T2 map and T1-weighted (T1w) TSE. Images were resampled to isotropic voxels. Fruits were segmented. The workflow was repeated by a second reader and the first reader after a pause of one month. We applied PyRadiomics to extract 107 radiomic features per fruit and sequence from seven feature classes. We calculated concordance correlation coefficients (CCC) and dynamic range (DR) to obtain measurements of feature robustness. Intraclass correlation coefficient (ICC) was calculated to assess intra- and inter-observer reproducibility. We calculated Gini scores to test the pairwise discriminative power specific for the features and MRI sequences. We depict Bland Altmann plots of features with top discriminative power (Mann–Whitney U test). Shape features were the most robust feature class. T2 map was the most robust imaging technique (robust features (rf), n = 84). HASTE sequence led to the least amount of rf (n = 20). Intra-observer ICC was excellent (≥ 0.75) for nearly all features (max–min; 99.1–97.2%). Deterioration of ICC values was seen in the inter-observer analyses (max–min; 88.7–81.1%). Complete robustness across all sequences was found for 8 features. Shape features and T2 map yielded the highest pairwise discriminative performance. Radiomics validity depends on the MRI sequence and feature class. T2 map seems to be the most promising imaging technique with the highest feature robustness, high intra-/inter-observer reproducibility and most promising discriminative power.

Funder

This work was supported in part by the LOEWE Center Frankfurt Cancer Institute (FCI) funded by the Hessen State Ministry for Higher Education, Research and the Arts

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3