A time-reversed model selection approach to time series forecasting

Author:

Sibeijn Max,Pequito Sérgio

Abstract

AbstractIn this paper, we introduce a novel model selection approach to time series forecasting. For linear stationary processes, such as AR processes, the direction of time is independent of the model parameters. By combining theoretical principles of time-reversibility in time series with conventional modeling approaches such as information criteria, we construct a criterion that employs the backwards prediction (backcast) as a proxy for the forecast. Hereby, we aim to adopt a theoretically grounded, data-driven approach to model selection. The novel criterion is named the backwards validated information criterion (BVIC). The BVIC identifies suitable models by trading off a measure of goodness-of-fit and a models ability to predict backwards. We test the performance of the BVIC by conducting experiments on synthetic and real data. In each experiment, the BVIC is examined in contrast to conventionally employed criteria. Our experimental results suggest that the BVIC has comparable performance as conventional information criteria. Specifically, in most of the experiments performed, we did not find statistically significant differences between the forecast error of the BVIC under certain parameterizations and that of the different information criteria. Nonetheless, it is worth emphasizing that the BVIC guarantees are established by design where the model order penalization term depends on strong mathematical properties of time-reversible time series forecasting properties and a finite data assessment. In particular, the penalization term is replaced by a weighted trade-off between functional dimensions pertaining to forecasting.That said, we observed that the BVIC recovered more accurately the real order of the underlying process than the other criteria, which rely on a static penalization of the model order. Lastly, leveraging the latter property we perform the assessment of the order model (or, memory) of time series pertaining to epileptic seizures recorded using electrocorticographic data. Our results provide converging evidence that the order of the model increases during the epileptic events.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3