Machine learning based on computational fluid dynamics enables geometric design optimisation of the NeoVAD blades

Author:

Nissim Lee,Karnik Shweta,Smith P. Alex,Wang Yaxin,Frazier O. Howard,Fraser Katharine H.

Abstract

AbstractThe NeoVAD is a proposed paediatric axial-flow Left Ventricular Assist Device (LVAD), small enough to be implanted in infants. The design of the impeller and diffuser blades is important for hydrodynamic performance and haemocompatibility of the pump. This study aimed to optimise the blades for pump efficiency using Computational Fluid Dynamics (CFD), machine learning and global optimisation. Meshing of each design typically included 6 million hexahedral elements and a Shear Stress Transport turbulence model was used to close the Reynolds Averaged Navier–Stokes equations. CFD models of 32 base geometries, operating at 8 flow rates between 0.5 and 4 L/min, were created to match experimental studies. These were validated by comparison of the pressure-flow and efficiency-flow curves with those experimentally measured for all base prototype pumps. A surrogate model was required to allow the optimisation routine to conduct an efficient search; a multi-linear regression, Gaussian Process Regression and a Bayesian Regularised Artificial Neural Network predicted the optimisation objective at design points not explicitly simulated. A Genetic Algorithm was used to search for an optimal design. The optimised design offered a 5.51% increase in efficiency at design point (a 20.9% performance increase) as compared to the best performing pump from the 32 base designs. An optimisation method for the blade design of LVADs has been shown to work for a single objective function and future work will consider multi-objective optimisation.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on the Global Patterns in the Design and Development of Ventricular Assist Devices: A Visualization Approach;2023-10-31

2. Blood-contacting magnetic levitation bearing design using computational fluid dynamics for haemocompatibility;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. Dissipated energy and efficiency as objective functions for the design of the NeoVAD rotary blood pump;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3