Insect vector manipulation by a plant virus and simulation modeling of its potential impact on crop infection

Author:

Lee Hyoseok,Stephanus Andrew P.,Fowles Trevor M.,Wintermantel William M.,Trumble John T.,Gilbertson Robert L.,Nansen Christian

Abstract

AbstractThere is widespread evidence of plant viruses manipulating behavior of their insect vectors as a strategy to maximize infection of plants. Often, plant viruses and their insect vectors have multiple potential host plant species, and these may not overlap entirely. Moreover, insect vectors may not prefer plant species to which plant viruses are well-adapted. In such cases, can plant viruses manipulate their insect vectors to preferentially feed and oviposit on plant species, which are suitable for viral propagation but less suitable for themselves? To address this question, we conducted dual- and no-choice feeding studies (number and duration of probing events) and oviposition studies with non-viruliferous and viruliferous [carrying beet curly top virus (BCTV)] beet leafhoppers [Circulifer tenellus (Baker)] on three plant species: barley (Hordeum vulgare L.), ribwort plantain (Plantago lanceolata L.), and tomato (Solanum lycopersicum L.). Barley is not a host of BCTV, whereas ribwort plantain and tomato are susceptible to BCTV infection and develop a symptomless infection and severe curly top symptoms, respectively. Ribwort plantain plants can be used to maintain beet leafhopper colonies for multiple generations (suitable), whereas tomato plants cannot be used to maintain beet leafhopper colonies (unsuitable). Based on dual- and no-choice experiments, we demonstrated that BCTV appears to manipulate probing preference and behavior by beet leafhoppers, whereas there was no significant difference in oviposition preference. Simulation modeling predicted that BCTV infection rates would to be higher in tomato fields with barley compared with ribwort plantain as a trap crop. Simulation model results supported the hypothesis that manipulation of probing preference and behavior may increase BCTV infection in tomato fields. Results presented were based on the BCTV-beet leafhopper pathosystem, but the approach taken (combination of experimental studies with complementary simulation modeling) is widely applicable and relevant to other insect-vectored plant pathogen systems involving multiple plant species.

Funder

Agricultural Marketing Service

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3