Non-destructive visualization of internal structural changes in humidified magnesium oxide tablets using X-ray computed tomography

Author:

Amemiya Takahiro,Suzuki Kazuhiro,Tomita Takashi

Abstract

AbstractDetailed examinations of the internal structure of tablets are imperative for comprehending their formulation, physical attributes, and ensuring their safe utilization. While X-ray computed tomography (CT) is valuable for noninvasively analyzing internal structural changes, the influence of humidity on these structural changes remains unexplored. Accordingly, we aimed to assess the viability of X-ray CT in non-destructively evaluating the internal structure of humidified magnesium oxide (MgO) tablets. MgO tablets were subjected to conditions of 40 °C and 75% humidity for 7 days, weighed pre- and post-humidification, and subsequently stored at room temperature (22–27 °C) until day 90. Their internal structure was evaluated using X-ray CT. We observed a substantial increase in the weight of MgO tablets concomitant with moisture absorption, with minimal changes observed upon storage at room temperature. The skewness reduced immediately post-moisture absorption, remained almost the same post-storage at room temperature, and failed to revert to pre-humidification levels during the storage period. These findings highlight the utility of X-ray CT as an effective tool for non-destructive, three-dimensional, and detailed evaluation of internal structural transformations in MgO tablets.

Funder

JSPS KAKENHI

Teikyo Heisei University Research Encouragement Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3