Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures

Author:

Wu Lijuan,Liu Xuewen,Lv Guocheng,Zhu Runliang,Tian Lintao,Liu Meng,Li Yuxin,Rao Wenxiu,Liu Tianming,Liao Libing

Abstract

AbstractMethyl orange (MO) is a common anionic azo dye that is harmful to the environment and biology, so it must be treated innocuously before it can be discharged. Adsorption is an effective method to remove anionic dyes. Nanotube mineral is a natural one-dimensional adsorption material, and its unique morphology and structure endow it with good adsorption capacity. Although there are many related studies, there is a lack of in-depth discussions on the influence of nanotube’s composition and structure on the adsorption of dyes and other pollutants. In this paper, two kinds of natural one-dimensional silicate minerals [halloysite nanotubes (HNTs) and chrysotile nanotubes (ChNTs)] with similar morphology but slightly different compositions and crystal structures were used as adsorbents, and MO solution was used as simulate pollutants. It is the first time to discuss in depth the influence of the composition and structure of nanotube minerals on their charge properties and the adsorption performance of methyl orange dyes. It is found that HNTs and ChNTs have different adsorption capacity due to the difference of electronegativity between Al3+ and Mg2+ in the crystal, so they possess negative and positive charges respectively in near-neutral solution, which leads to the adsorption capacity of MO by ChNTs with positive charges which is greater than that of HNTs.

Funder

National Natural Science Foundation of China

CAS Interdisciplinary Innovation Team, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3