Tailor-designed nanoparticle-based PdNiSn catalyst as a potential anode for glycerol fuel cells

Author:

El-Nowihy Ghada H.

Abstract

AbstractIn order to effectively use glycerol as a fuel in direct glycerol fuel cells, a catalyst that can break the C–C bond and enhance the electro-oxidation of glycerol to CO2 is necessary. In this particular investigation, a palladium-nickel-tin nanocomposite electrodeposited on a glassy carbon electrode (PdNiSn/GC) exhibited excellent activity towards the electro-oxidation of glycerol, thanks to the synergistic effect of the catalyst composition. The PdNiSn/GC surface generated a peak current (Ip) that was 2.5 times higher than that obtained at a Pd/GC electrode, with a cathodic shift in the onset potential (Eonset) of approximately 300 mV. Additionally, the current obtained at the PdNiSn/GC surface remained stable during continuous electrolysis. Capacitance measurements were used to interpret the results of the electrocatalytic activity, and high-performance liquid chromatography indicated that the products of the glycerol electro-oxidation reaction were oxalic acid and formic acid, which were subsequently oxidized to CO2, as revealed by the charge calculations. The results depict that the synergy between Pd, β-Ni(OH)2, and SnO2 is crucial for boosting GEOR through enhancing the C–C bond cleavage and completely oxidize the reaction intermediates to CO2.

Funder

British University in Egypt

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3