Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks

Author:

Helland Ragnhild Holden,Ferles Alexandros,Pedersen André,Kommers Ivar,Ardon Hilko,Barkhof Frederik,Bello Lorenzo,Berger Mitchel S.,Dunås Tora,Nibali Marco Conti,Furtner Julia,Hervey-Jumper Shawn,Idema Albert J. S.,Kiesel Barbara,Tewari Rishi Nandoe,Mandonnet Emmanuel,Müller Domenique M. J.,Robe Pierre A.,Rossi Marco,Sagberg Lisa M.,Sciortino Tommaso,Aalders Tom,Wagemakers Michiel,Widhalm Georg,Witte Marnix G.,Zwinderman Aeilko H.,Majewska Paulina L.,Jakola Asgeir S.,Solheim Ole,Hamer Philip C. De Witt,Reinertsen Ingerid,Eijgelaar Roelant S.,Bouget David

Abstract

AbstractExtent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.

Funder

The Research Council of Norway

Stichting Hanarth fonds

Rijksdienst voor Ondernemend Nederland

Topsector Life Sciences and Health

Innovative Medical Devices Initiative program

The Netherlands Organisation for Scientific Research

Dutch Cancer Society

Anita Veldman foundation

Norwegian National Research Center for Minimally Invasive and Image-Guided Diagnostics and Therapy

National Institute for Health Research (NIHR) biomedical research centre at UCLH

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3