A tool for rapid, automated characterization of population epigenomics in plants

Author:

Colicchio Jack M.,Amstutz Cynthia L.,Garcia Nelson,Prabhu Keerthana N.,Cairns Thomas M.,Akman Melis,Gottilla Thomas,Gollery Twyla,Stricklin Shawn L.,Bayer Travis S.

Abstract

AbstractEpigenetic variation in plant populations is an important factor in determining phenotype and adaptation to the environment. However, while advances have been made in the molecular and computational methods to analyze the methylation status of a given sample of DNA, tools to profile and compare the methylomes of multiple individual plants or groups of plants at high resolution and low cost are lacking. Here, we describe a computational approach and R package (sounDMR) that leverages the benefits of long read nanopore sequencing to enable robust identification of differential methylation from complex experimental designs, as well as assess the variability within treatment groups and identify individual plants of interest. We demonstrate the utility of this approach by profiling a population of Arabidopsis thaliana exposed to a demethylating agent and identify genomic regions of high epigenetic variability between individuals. Given the low cost of nanopore sequencing devices and the ease of sample preparation, these results show that high resolution epigenetic profiling of plant populations can be made more broadly accessible in plant breeding and biotechnology.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3