Abstract
AbstractIn collective decision-making, a group of independent experts propose individual choices to reach a common decision. This is the case of competitive events such as Olympics, international Prizes or grant evaluation, where groups of experts evaluate individual performances to assign resources, e.g. scores, recognitions, or funding. However, there are systems where evaluating individual’s performance is difficult: in those cases, other factors play a relevant role, leading to unexpected emergent phenomena from micro-scale interactions. The Nobel assignment procedure, rooted on recommendations, is one of these systems. Here we unveil its network, reconstructed from official data and metadata about nominators, nominees and awardees between 1901 and 1965, consisting of almost 12,000 individuals and 17,000 nominations. We quantify the role of homophily, academic reputation of nominators and their prestige neighborhood, showing that nominees endorsed by central actors – who are part of the system’s core because of their prestigious reputation – are more likely to become laureate within a finite time scale than nominees endorsed by nominators in the periphery of the network. We propose a mechanistic model which reproduces all the salient observations and allows to design possible countermeasures to mitigate observed effects.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Statutes of the nobel foundation, https://www.nobelprize.org/nobel_organizations/nobelfoundation/statutes.html Accessed: October 2017 (2017).
2. Nomination and selection of nobel laureates, https://www.nobelprize.org/nomination/ Accessed: October 2016 (2016).
3. Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).
4. Moreira, J. A., Zeng, X. H. T. & Amaral, L. A. N. The distribution of the asymptotic number of citations to sets of publications by a researcher or from an academic department are consistent with a discrete lognormal model. PloS one 10, e0143108 (2015).
5. Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual scientific impact. Science 354, aaf5239 (2016).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献