Strain-tunable triple point Fermions in diamagnetic rare-earth half-Heusler alloys

Author:

Bhattacharya Anupam,Bhardwaj Vishal,Mani Brajesh K,Dutt Jayanta K,Chatterjee Ratnamala

Abstract

AbstractTopologically non-trivial electronic structure is a feature of many rare-earth half-Heusler alloys, which host atoms with high spin-orbit coupling bringing in the non-triviality. In this article, using the first-principles simulations, rare-earth half-Heusler YPdBi, ScPdBi, LaPdBi, LuPdBi, YPtBi and LuPtBi alloys are studied under strain to reveal multiple band inversions associated with topological phase transitions. From our simulations we find that, as a result of first band-inversion, the Brillouin zone of the diamagnetic half-Heusler alloys hosts eight triple points whereas, the second band inversion causes the emergence of sixteen more triple points. These band-inversions are observed to be independent of the spin-orbit coupling and are the reason behind increasing occupation of bismuth 7s orbitals as volume of the unit cell increases. The surface electronic transport in different triple point semi-metallic phases is found to evolve under strain, as the number of Fermi arcs change due to multiple band inversions. Once the second band inversion occurs, further application of tensile strain does not increase the number of triple points and Fermi arcs. However, increasing tensile strain (or decreasing compressive strain) pushes the triple point crossing to higher momenta, making them more effective as source of highly mobile electrons. These observations make a pathway to tune the bulk as well as surface transport through these semi-metals by application of tensile or compressive strain depending on the unstrained relative band-inversion strength of the material.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3