Revealing novel biomarkers for diagnosing chronic kidney disease in pediatric patients

Author:

Benito SandraORCID,Unceta NoraORCID,Maciejczyk MateuszORCID,Sánchez-Ortega AliciaORCID,Taranta-Janusz KatarzynaORCID,Szulimowska JulitaORCID,Zalewska AnnaORCID,Andrade FernandoORCID,Gómez-Caballero AlbertoORCID,Dubiela PawelORCID,Barrio Ramón J.ORCID

Abstract

AbstractPediatric chronic kidney disease (CKD) is a clinical condition characterized by progressive renal function deterioration. CKD diagnosis is based on glomerular filtration rate, but its reliability is limited, especially at the early stages. New potential biomarkers (citrulline (CIT), symmetric dimethylarginine (SDMA), S-adenosylmethionine (SAM), n-butyrylcarnitine (nC4), cis-4-decenoylcarnitine, sphingosine-1-phosphate and bilirubin) in addition to creatinine (CNN) have been proposed for early diagnosis. To verify the clinical value of these biomarkers we performed a comprehensive targeted metabolomics study on a representative cohort of CKD and healthy pediatric patients. Sixty-seven children with CKD and forty-five healthy children have been enrolled in the study. Targeted metabolomics based on liquid chromatography-triple quadrupole mass spectrometry has been used for serum and plasma samples analysis. Univariate data analysis showed statistically significant differences (p < 0.05) in the concentration of CNN, CIT, SDMA, and nC4 among healthy and CKD pediatric patients. The predictive ability of the proposed biomarkers was also confirmed through specificity and sensitivity expressed in Receiver Operating Characteristic curves (AUC = 0.909). In the group of early CKD pediatric patients, AUC of 0.831 was obtained, improving the diagnostic reliability of CNN alone. Moreover, the models built on combined CIT, nC4, SDMA, and CNN allowed to distinguish CKD patients from healthy control regardless of blood matrix type (serum or plasma). Our data demonstrate potential biomarkers in the diagnosis of early CKD stages.

Funder

Basque Government

Spanish Ministry of Science and Innovation

Vice-Rectorate for Research of the University of the Basque Country UPV/EHU

Medical University of Bialystok

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3