Author:
Wu Muying,Jiang Xuandong,Du Kailei,Xu Yingting,Zhang Weimin
Abstract
AbstractAcute kidney injury (AKI) is a common postoperative complication among patients in the neurological intensive care unit (NICU), often resulting in poor prognosis and high mortality. In this retrospective cohort study, we established a model for predicting AKI following brain surgery based on an ensemble machine learning algorithm using data from 582 postoperative patients admitted to the NICU at the Dongyang People's Hospital from March 1, 2017, to January 31, 2020. Demographic, clinical, and intraoperative data were collected. Four machine learning algorithms (C5.0, support vector machine, Bayes, and XGBoost) were used to develop the ensemble algorithm. The AKI incidence in critically ill patients after brain surgery was 20.8%. Intraoperative blood pressure; postoperative oxygenation index; oxygen saturation; and creatinine, albumin, urea, and calcium levels were associated with the postoperative AKI occurrence. The area under the curve value for the ensembled model was 0.85. The accuracy, precision, specificity, recall, and balanced accuracy values were 0.81, 0.86, 0.44, 0.91, and 0.68, respectively, indicating good predictive ability. Ultimately, the models using perioperative variables exhibited good discriminatory ability for early prediction of postoperative AKI risk in patients admitted to the NICU. Thus, the ensemble machine learning algorithm may be a valuable tool for forecasting AKI.
Funder
Jinhua Science and Technology Bureau
Zhejiang Medical Association
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献