Experimental study of energy‑absorbing and support characteristics of glass microsphere-filled steel tube columns under uniaxial compression

Author:

Ma Jia-hui,Sun Qiu-di,Liu Shun,Yang Xiao-bin

Abstract

AbstractAn innovative energy-absorbing and bearing structure was proposed, which incorporated the coupling of glass microspheres with a metal tube. Glass microsphere-filled steel tube (GMFST) column, consisting of external steel tube and inner glass microspheres, was expected to give full play to the energy-absorbing and load-bearing capacities of the particle while restricting particle flow from collapsing, thereby enhancing the overall structural strength. Four groups of steel tubes and the GMFST specimens were designed and subjected to axial compression tests at four different loading rates to investigate the performance of the structure. These tests aimed to analyze the deformation mode, mechanical response, and energy absorption capacity of the GMFST columns under quasi-static to low-speed compression conditions. The results indicated that the deformation process and failure mode of GMFST columns were similar to those of hollow steel tubes, albeit with a different post-buckling mode. Filling the steel tubes with glass microspheres reduced the load fluctuation range, moderated load–displacement curves, and exhibited a strain rate strengthening effect. The GMFST columns demonstrated superior energy absorption capacity, with significant increases in crush force efficiency, the averaged crush force, and the total absorbed energy, particularly in terms of subsequent support capacity. The load-increasing reinforcement properties enabled GMFST columns to overcome the limitations associated with the unstable post-buckling path of energy‑absorbing damping structure, exhibiting outstanding load-bearing performance and stability in the later stages. The results provided valuable guidelines for designing and engineering high-performance GMFST columns, serving as a new type of energy-absorbing and supporting structure.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3