Quantification of pedogenic particles masked by geogenic magnetic fraction

Author:

Szuszkiewicz Marcin,Grison Hana,Petrovský Eduard,Szuszkiewicz Maria Magdalena,Gołuchowska Beata,Łukasik Adam

Abstract

AbstractPedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples composed of natural substances: a diamagnetic quartz matrix, detrital coarse-grained ferrimagnetic crystals from alkaline and ultra-alkaline igneous rocks, and superparamagnetic soil concretions formed in the Haplic Cambisol. Mineralogy, concentration, type and grain size of the tested material were described by parameters of environmental magnetism. The magnetic parameters distinguish both geogenic multidomain and pedogenic superparamagnetic grains. The magnetic signal of the superparamagnetic grains is gradually masked by the increasing proportion of multidomain grains of magnetite/maghemite. The experiment clearly describes the masking effect and brings new insight to studies dealing with strongly magnetic soils of natural and/or highly contaminated origin as a tool for estimation of superparamagnetic pedogenic contribution.

Funder

National Science Centre

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3