Author:
Fischer Delaney K.,Krick Keegan S.,Han Chloe,Woolf Morgan T.,Heller Elizabeth A.
Abstract
AbstractCocaine epigenetically regulates gene expression via changes in histone post-translational modifications (HPTMs). We previously found that the immediate early gene Nr4a1 is epigenetically activated by cocaine in mouse brain reward regions. However, few studies have examined multiple HPTMs at a single gene. Bivalent gene promoters are simultaneously enriched in both activating (H3K4me3 (K4)) and repressive (H3K27me3 (K27)) HPTMs. As such, bivalent genes are lowly expressed but poised for activity-dependent gene regulation. In this study, we identified K4&K27 bivalency at Nr4a1 following investigator-administered cocaine in male and female mice. We applied sequential chromatin immunoprecipitation and qPCR to define Nr4a1 bivalency and expression in striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). We used Pearson’s correlation to quantify relationships within each brain region across treatment conditions for each sex. In female STR, cocaine increased Nr4a1 mRNA while maintaining Nr4a1 K4&K27 bivalency. In male STR, cocaine enriched repressive H3K27me3 and K4&K27 bivalency at Nr4a1 and maintained Nr4a1 mRNA. Furthermore, cocaine epigenetically regulated a putative NR4A1 target, Cartpt, in male PFC. This study defined the epigenetic regulation of Nr4a1 in reward brain regions in male and female mice following cocaine, and, thus, shed light on the biological relevance of sex to cocaine use disorder.
Funder
U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse
Penn | School of Arts and Sciences, University of Pennsylvania
Penn | Perelman School of Medicine, University of Pennsylvania
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献